Publications

 2019

  1. Bellucci, G.; Hahn, T.; Deshpande, G.; Krueger, F. Functional Connectivity of Specific Resting-State Networks Predicts Trust and Reciprocity in the Trust Game. Cogn Affect Behav Neurosci 2019, 19 (1), 165–176. https://doi.org/10.3758/s13415-018-00654-3.

  2. Cheval, B.; Boisgontier, M. P.; Bacelar, M. F. B.; Feiss, R.; Miller, M. W. Opportunities to Sit and Stand Trigger Equivalent Reward-Related Brain Activity. Int J Psychophysiol 2019, 141, 9–17. https://doi.org/10.1016/j.ijpsycho.2019.04.009.

  3. Cheval, B.; Rebar, A. L.; Miller, M. W.; Sieber, S.; Orsholits, D.; Baranyi, G.; Courvoisier, D.; Cullati, S.; Sander, D.; Chalabaev, A.; et al. Cognitive Resources Moderate the Adverse Impact of Poor Perceived Neighborhood Conditions on Self-Reported Physical Activity of Older Adults. Prev Med 2019, 126, 105741. https://doi.org/10.1016/j.ypmed.2019.05.029.

  4. Daou, M.; Rhoads, J. A.; Jacobs, T.; Lohse, K. R.; Miller, M. W. Does Limiting Pre-Movement Time during Practice Eliminate the Benefit of Practicing While Expecting to Teach? Human Movement Science 2019, 64, 153–163. https://doi.org/10.1016/j.humov.2018.11.017.

  5. Dretsch, M. N.; Rangaprakash, D.; Katz, J. S.; Daniel, T. A.; Goodman, A. M.; Denney, T. S.; Deshpande, G. Strength and Temporal Variance of the Default Mode Network to Investigate Chronic Mild Traumatic Brain Injury in Service Members with Psychological Trauma. J Exp Neurosci 2019, 13, 1179069519833966. https://doi.org/10.1177/1179069519833966.

  6. Lanka, P., Deshpande, R., Dretsch, M.N., Katz, J.S., Denney, T.S., Deshpande, G. (in press). Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging and Behavior (in press)

  7. Lanka, P., Deshpande, R., Gotoor, S., Dretsch, M.N., Katz, J.S., Denney, T.S., Deshpande, G. (in press). MALINI (Machine Learning in NeuroImaging): A MATLAB toolbox for diagnostic classification, Data in Brief (in press)

  8. Lanka, P., Deshpande, R. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Brain and Behavior, (in press)

  9. Lohse, K. R.; Miller, M. W.; Daou, M.; Valerius, W.; Jones, M. Dissociating the Contributions of Reward-Prediction Errors to Trial-Level Adaptation and Long-Term Learning. Biol Psychol 2019, 149, 107775. https://doi.org/10.1016/j.biopsycho.2019.107775.

  10. McCormick, M.; Reyna, V. F.; Ball, K.; Katz, J. S.; Deshpande, G. Neural Underpinnings of Financial Decision Bias in Older Adults: Putative Theoretical Models and a Way to Reconcile Them. Front Neurosci 2019, 13. https://doi.org/10.3389/fnins.2019.00184.

  11. Pathania, A.; Leiker, A. M.; Euler, M.; Miller, M. W.; Lohse, K. R. Challenge, Motivation, and Effort: Neural and Behavioral Correlates of Self-Control of Difficulty during Practice. Biol Psychol 2019, 141, 52–63. https://doi.org/10.1016/j.biopsycho.2019.01.001.

  12. Pruziner, A. L.; Shaw, E. P.; Rietschel, J. C.; Hendershot, B. D.; Miller, M. W.; Wolf, E. J.; Hatfield, B. D.; Dearth, C. L.; Gentili, R. J. Biomechanical and Neurocognitive Performance Outcomes of Walking with Transtibial Limb Loss While Challenged by a Concurrent Task. Exp Brain Res 2019, 237 (2), 477–491. https://doi.org/10.1007/s00221-018-5419-8.

  13. Rangaprakash, D.; Dretsch, M. N.; Katz, J. S.; Denney Jr., T. S.; Deshpande, G. Dynamics of Segregation and Integration in Directional Brain Networks: Illustration in Soldiers With PTSD and Neurotrauma. Front. Neurosci. 2019, 13. https://doi.org/10.3389/fnins.2019.00803.

  14. Shaw, E. P.; Rietschel, J. C.; Hendershot, B. D.; Pruziner, A. L.; Wolf, E. J.; Dearth, C. L.; Miller, M. W.; Hatfield, B. D.; Gentili, R. J. A Comparison of Mental Workload in Individuals with Transtibial and Transfemoral Lower Limb Loss during Dual-Task Walking under Varying Demand. J Int Neuropsychol Soc 2019, 25 (9), 985–997. https://doi.org/10.1017/S1355617719000602.

  15. Strassberg, L., Waggoner, L.P., Deshpande, G., & Katz, J.S. (in press). Training Dogs for Awake, Unrestrained Functional Magnetic Resonance Imaging. Journal of Visualized Experiments (in press)

  16. Syed, M. A.; Yang, Z.; Rangaprakash, D.; Hu, X.; Dretsch, M. N.; Katz, J. S.; Denney, T. S.; Deshpande, G. DisConICA: A Software Package for Assessing Reproducibility of Brain Networks and Their Discriminability across Disorders. Neuroinform 2019. https://doi.org/10.1007/s12021-019-09422-1.

  17. Zhao, X.; Rangaprakash, D.; Denney, T. S.; Katz, J. S.; Dretsch, M. N.; Deshpande, G. Identifying Neuropsychiatric Disorders Using Unsupervised Clustering Methods: Data and Code. Data in Brief 2019, 22, 570–573. https://doi.org/10.1016/j.dib.2018.01.080.

 2018

  1. Bloemer, J.; Pinky, P. D.; Govindarajulu, M.; Hong, H.; Judd, R.; Amin, R. H.; Moore, T.; Dhanasekaran, M.; Reed, M. N.; Suppiramaniam, V. Role of Adiponectin in Central Nervous System Disorders. Neural Plast. 2018, 2018, 4593530. https://doi.org/10.1155/2018/4593530.

  2. Daniel, T. A.; Townsend, K. M.; Wang, Y.; Martin, D. S.; Katz, J. S.; Deshpande, G. North American Football Fans Show Neurofunctional Differences in Response to Violence: Implications for Public Health and Policy. Front Public Health 2018, 6. https://doi.org/10.3389/fpubh.2018.00177.

  3. Govindarajulu, M.; Pinky, P. D.; Bloemer, J.; Ghanei, N.; Suppiramaniam, V.; Amin, R. Signaling Mechanisms of Selective PPARγ Modulators in Alzheimer’s Disease. PPAR Res 2018, 2018, 2010675. https://doi.org/10.1155/2018/2010675.

  4. Lanka, P., Deshpande, R. Resting state fMRI data from subjects scanned with EPI-PACE (Echoplanar Imaging – Prospective Acquisition CorrEction) sequence, Data in Brief, 2018 (in press). 

  5. Thompkins, A. M.; Ramaiahgari, B.; Zhao, S.; Gotoor, S. S. R.; Waggoner, P.; Denney, T. S.; Deshpande, G.; Katz, J. S. Separate Brain Areas for Processing Human and Dog Faces as Revealed by Awake FMRI in Dogs (Canis Familiaris). Learn Behav 2018, 46 (4), 561–573. https://doi.org/10.3758/s13420-018-0352-z.

  6. Wheelock, M. D.; Rangaprakash, D.; Harnett, N. G.; Wood, K. H.; Orem, T. R.; Mrug, S.; Granger, D. A.; Deshpande, G.; Knight, D. C. Psychosocial Stress Reactivity Is Associated with Decreased Whole-Brain Network Efficiency and Increased Amygdala Centrality. Behav. Neurosci. 2018, 132 (6), 561–572. https://doi.org/10.1037/bne0000276.

  7. Zhao, X.; Rangaprakash, D.; Yuan, B.; Denney, T. S.; Katz, J. S.; Dretsch, M. N.; Deshpande, G. Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning. Front Appl Math Stat 2018, 4. https://doi.org/10.3389/fams.2018.00025.

Papers cited in American Chemical Society format

Last modified: Jun 6, 2023 @ 4:44 pm